
DL4MD: A Deep Learning Framework for Intelligent Malware
Detection

William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye∗, and Xin Li
Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506, USA

Abstract- In the Internet-age, malware poses a serious and evolving
threat to security, making the detection of malware of utmost
concern. Many research efforts have been conducted on intelligent
malware detection by applying data mining and machine learning
techniques. Though great results have been obtained with these
methods, most of them are built on shallow learning architectures,
which are still somewhat unsatisfying for malware detection prob-
lems. In this paper, based on the Windows Application Programming
Interface (API) calls extracted from the Portable Executable (PE)
files, we study how a deep learning architecture using the stacked
AutoEncoders (SAEs) model can be designed for intelligent malware
detection. The SAEs model performs as a greedy layerwise training
operation for unsupervised feature learning, followed by supervised
parameter fine-tuning (e.g., weights and offset vectors). To the best
of our knowledge, this is the first work that deep learning using the
SAEs model based on Windows API calls is investigated in malware
detection for real industrial application. A comprehensive experi-
mental study on a real and large sample collection from Comodo
Cloud Security Center is performed to compare various malware
detection approaches. Promising experimental results demonstrate
that our proposed method can further improve the overall per-
formance in malware detection compared with traditional shallow
learning methods.

Keywords: Malware Detection, Windows Application Programming
Interface (API) Calls, Deep Learning.

1 Introduction
Malware is malicious software disseminated to infiltrate

the secrecy, integrity, and functionality of a system [8],

such as viruses, worms, trojans, backdoors, spyware. With

computers and the Internet being essential in everyday life,

malware poses a serious threat to their security. It is estimated

that one in four computers operating in the U.S. are infected

with malware [24]. The threat malware poses is not only

emotional, but financial as well. According to a recent report

from Kaspersky Lab, up to one billion dollars was stolen in

roughly two years from financial institutions worldwide, due

to malware attacks [16]. As a result, the detection of malware

is of major concern to both the anti-malware industry and

researchers.

In order to protect legitimate users from the attacks, the

majority of anti-malware software products (e.g., Comodo,

Symantec, Kaspersky) use the signature-based method of

detection [10], [9]. Signature is a short string of bytes,

which is unique for each known malware so that its future

examples can be correctly classified with a small error rate

[19]. However, this method can be easily evaded by malware

∗Corresponding author

attackers through the techniques such as encryption, poly-

morphism and obfuscation [29], [2]. Furthermore, malicious

files are being disseminated at a rate of thousands per day

[34], making it difficult for this signature-based method to be

effective. In order to combat the malware attacks, intelligent

malware detection techniques need to be investigated. As a

result, many researches have been conducted on intelligent

malware detection by applying data mining and machine

learning techniques in recent years [27], [1], [23], [32], [35].

Based on different feature representations, different kinds

of classification methods, such as Artificial Neural Network

(ANNs), Support Vector Machine (SVM), Naı̈ve Bayes (NB),

and Decision Tree (DT), are used for model construction

to detect malware [20], [7], [27]. Most of these methods

are built on shallow learning architectures. Though they

had isolated success in malware detection, shallow learning

architectures are still somewhat unsatisfying for malware

detection problems.

Deep learning (DL), a new frontier in data mining and

machine learning, is starting to be leveraged in industrial and

academic research for different applications (e.g., Computer

Vision) [4], [14], [22]. A multilayer deep learning archi-

tecture is of superior ability in feature learning. More im-

portantly, deep learning architectures overcome the learning

difficulty through layerwise pretraining, i.e. pretraining mul-

tiple layers of feature detectors from the lowest level to the

highest level to construct the final classification model [22].

This inspires us to devise a malware detection architecture

based on deep learning.

In this paper, a deep learning architecture using the

stacked AutoEncoders (SAEs) model for malware detection

is studied, with the input resting on Windows Applica-

tion Programming Interface (API) calls extracted from the

Portable Executable (PE) files. The SAEs model employs a

greedy layerwise training operation for unsupervised feature

learning, followed by supervised parameter fine-tuning (e.g.,

weights and offset vectors). To the best of our knowledge,

this is the first work investigating deep learning using the

SAEs model resting on Windows API calls in malware

detection for real industrial application. For validation, a

comprehensive experimental study on a real and large sample

collection from Comodo Cloud Security Center is performed

to compare various malware detection approaches. The ex-

perimental results obtained demonstrate that our proposed

method can further improve the overall performance in mal-

ware detection compared with traditional shallow learning

Int'l Conf. Data Mining | DMIN'16 | 61

ISBN: 1-60132-431-6, CSREA Press ©

methods and that deep learning is a promising architecture

for malware detection.

The rest of the paper is structured as follows. Section 2

presents the related work. Section 3 describes the overview

of our malware detection system. Section 4 introduces our

proposed deep learning approach for malware detection.

Section 5 evaluates the performance of our proposed method

in comparison with other alternative methods in malware

detection. Finally, Section 6 concludes.

2 Related work
Signature-based method is widely used in anti-malware

industry [10], [9]. However, malware authors can easily

evade this signature-based method through techniques such

as encryption, polymorphism and obfuscation [29]. Driven

by the economic benefits, the quantity, diversity and so-

phistication of malware has significantly increased in recent

years [34]. In order to effectively and automatically detect

malware from the real and large daily sample collection, new,

intelligent malware detection systems have been developed

by applying data mining and machine learning techniques

[31], [27], [20], [33], [28], [13]. These intelligent malware

detection systems are varied in their uses of feature repre-

sentations and classification methods. Naı̈ve Bayes on the

extracted strings and byte sequences was applied in [27],

which claimed that Naı̈ve Bayes classifier performed better

than traditional signature-based method. Kolter et al. [20]

focused on static analysis of the executable files and com-

pared Naı̈ve Bayes, Support Vector Machine and Decision

Tree based on the n-grams. Ye et al. [33] proposed IMDS

performing associative classification on Windows API calls

extracted from executable files. Shah et al. [28] applied

various feature selection algorithms to obtain the feature sets

from PE files and used Artificial Neural Networks to detect

new and unknown malware. Hou et al. [13] developed the

intelligent malware detection system using cluster-oriented

ensemble classifiers resting on the analysis of Windows API

calls. Most of these existing researches are built on shallow

learning architectures.

Due to its superior ability in feature learning through

multilayer deep architecture [11], deep learning is feasible

to learn higher level concepts based on the local feature

representations [25]. As a result, researchers have paid much

attention to deep learning methods in the domains of natural

language processing, computer vision, etc. [18], [6]. In

recent years, limited research efforts have been devoted to

the malware detection using deep learning [21], [25], [15].

Ouellette et al. [25] extracted control flow graphs to present

malware samples, and used a deep probabilistic model (sum-

product network) to compare the similarities between the

unknown file samples and those of representative sample

features from known classes of malware. Jung et al. [15]

used the features of header, tags, bytecode and API calls

and utilized an ensemble learner consisting of different deep

learning networks (e.g., deep feed-forward neural network,

deep recurrent neural network) to classify the Adobe Flash

file samples. Li et al. [21] proposed a hybrid malicious code

detection approach on the basis of AutoEncoder and Deep

Belief Network, where AutoEncoder was used to reduce

the dimensionality of data, and a Deep Belief Network was

applied to detect malicious code.

Different from the previous work, based on a real and

large sample collection from Comodo Cloud Security Center,

resting on the analysis of Windows API calls, we attempt to

explore a deep learning architecture with the SAEs model to

learn generic features of malware and thus to detect newly

unknown malware.

3 System architecture
Our deep learning framework for malware detection (short

for DL4MD) is performed on the analysis of Windows API

calls generated from the collected PE files. The system

consists of two major components: feature extractor, and

deep learning based classifier, as illustrated in Figure 1.

Fig. 1. DL4MD system architecture

• Feature Extrator: It is composed of Decompressor and

PE Parser. The Decompressor needs to be employed

first when a PE file is previously compressed by a

binary compress tool (e.g., UPX and ASPack Shell)

or embedded a homemade packer. The PE parser is

used to extract the Windows API calls from each PE

file. Through the API query database, the Windows

API calls can be converted to a set of 32-bit global

IDs representing the corresponding API functions (e.g.,

the API of “MAPI32.MAPIReadMail” is encoded as

0x00600F12). Then the API calls are stored as the

signatures of the PE files in the signature database.

• Deep Learning based Classifier: Based on the Windows

API calls, a deep learning architecture using SAEs

model is designed to perform unsupervised feature

learning, supervised fine-tuning, and thus malware de-

tection. (See Section 4 for details.)

62 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

TABLE I

AN EXAMPLE DATASET OF SAMPLE FILES

File Extracted API Calls Feature Vector Class

f1 API1, API3 < 1, 0, 1, 0, 0 > cm

f2 API2, API3, API5 < 0, 1, 1, 0, 1 > cb

f3 API2, API3, API4, API5 < 0, 1, 1, 1, 1 > cb

f4 API3 < 0, 0, 1, 0, 0 > cm

f5 API1, API2, API4 < 1, 1, 0, 1, 0 > cg

4 Proposed method
4.1 Problem definition

Resting on the analysis of Windows API calls, which can

reflect the behavior of program code pieces [32] (e.g., the

API “GetModuleFileNameA” in “Kernel32.DLL” can be used

to retrieve the complete path of the file that contains the

specified module of current process), a file fi in our dataset

D is denoted to be of the form 〈Afi , Cfi〉, where Afi is the

Windows API call feature vector of file fi, and Cfi is the

class label of file fi (where Cfi ∈ {cm, cb, cg}; cm denotes

malicious, cb benign, and cg unknown). Let d be the number

of all extracted Windows API calls in the dataset D. The

feature of each file can be represented by a binary feature

vector:

Afi =< ai1, ai2, ai3, ..., aid >, (1)

where aij = {0, 1} (i.e., if fi contains APIj , aij = 1;

otherwise, aij = 0). Table I shows a sample example.

Our malware detection problem statement can be stated as

follows: Given a dataset D as defined above, assign a label
(i.e., cm or cb) to each unlabeled file (i.e., cg) based on its
feature vector.

Although classification methods based on shallow learning

architectures, such as Support Vector Machine (SVM), Naı̈ve

Bayes (NB), Decision Tree (DT), and Artificial Neural Net-

work (ANN), can be used to solve the above malware detec-

tion problem, deep learning has been demonstrated to be one

of the most promising architectures for its superior layerwise

feature learning models and can thus achieve comparable or

better performance [11]. Typical deep learning models in-

clude stacked AutoEncoders (SAEs), Deep Belief Networks

with Restricted Boltzmann Machine, Convolutional Neural

Networks [5], etc. In this paper, we explore a deep learning

architecture with SAEs model for malware detection. The

SAE model is a stack of AutoEncoders, which are used as

building blocks to create a deep network.

4.2 AutoEncoder
An AutoEncoder, also called AutoAssociator, is an ar-

tificial neural network used for learning efficient codings

[30]. Architecturally, the form of an AutoEncoder is with an

input layer, an output layer and one or more hidden layers

connecting them. The goal of an AutoEncoder is to encode a

representation of the input layer into the hidden layer, which

is then decoded into the output layer, yielding the same (or

as close as possible) value as the input layer [4]. In this way,

the hidden layer acts as another representation of the feature

space, and in the case when the hidden layer is narrower

(has fewer nodes) than the input/output layers, the activations

of the final hidden layer can be regarded as a compressed

representation of the input [4], [30], [5]. Figure 2 illustrates

a one-layer AutoEncoder model with one input layer, one

hidden layer, and one output layer.

Fig. 2. A one-layer AutoEncoder model

Given a training set X of n samples {x1,x2,x3, ...,xn},

where xi (i ∈ {1, ..., n}) is a d0-dimensional feature vector,

i.e., xi ∈ Rd0 , and a sigmoid function denoted as

s(t) =
1

1 + exp−t
, (2)

the AutoEncoder framework can be rigorously defined as

follows [30], [22].

Encoder: In order to transform an input vector xi into a

hidden representation vector yi, the encoder, a deterministic

mapping fθ, is utilized. Its typical form is an affine mapping

followed by a nonlinearity [30]:

yi = fθ(xi) = s(Wxi + b), (3)

where W is a d0 × d1 weight matrix, d1 is the number of

hidden units, b is an offset vector of dimensionality d1, and

θ is the mapping parameter set θ = {W,b}.

Decoder: The resulting hidden representation yi is then

mapped back to a reconstructed d0-dimensional vector zi
in the input space, using the decoder gθ′ . Its typical form

is again an affine mapping optionally followed by a non-

linearity [30], i.e., either zi = gθ′(xi) = W′yi + b′ or

zi = gθ′(xi) = s(W′yi + b′), (4)

where W′ is a d1 × d0 weight matrix, b′ is also an offset

vector of dimensionality d0, and θ′ = {W′,b′}.

Typically, the number of hidden units is much less than

number of visible (input/output) ones (d1 < d0). As a result,

when passing data through such a network, it first compresses

(encodes) input vector to “fit” in a smaller representation, and

then tries to reconstruct (decode) it back. The task of training

is to minimize an error or reconstruction (using Equation 5),

i.e. find the most efficient compact representation (encoding)

for input data (Equation 6).

E(x, z) =
1

2

n∑
i=1

||xi − zi||2. (5)

θ = {W,b} = arg
θ

minE(x, z). (6)

Int'l Conf. Data Mining | DMIN'16 | 63

ISBN: 1-60132-431-6, CSREA Press ©

Algorithm 1 illustrates the training procedure of AutoEn-

coder in our application. Note that other parameterized

functions and loss functions can also be used for the encoder

or decoder in the AutoEncoder framework [30].

Input: Data set X with n training samples:

xi =< Afi , Cfi >, where i ∈ {1, ..., n} and

Cfi ∈ {cm, cb}
Output: Parameter set θ = {W,b}
Initialize (W, b);

while training error E hasn’t converged or the
designated iteration hasn’t reached do

for each input xi do
Compute activations yi at the hidden layer, and

obtain an output zi at the output layer;

end
Calculate the training error E(x, z);
Backpropagate the error through the net and update

parameter set θ = {W,b};
end

Algorithm 1: The algorithm for training AutoEncoder in

malware detection

4.3 Deep learning architecture with SAEs
To form a deep network, an SAE model is created by

daisy chaining AutoEncoders together, known as stacking:

the output of one AutoEncoder in the current layer is used as

the input of the AutoEncoder in the next [5]. More rigorously,

with an SAE deep network with h layers, the first layer takes

the input from the training dataset and is trained simply as an

AutoEncoder. Then, after the kth hidden layer is obtained,

its output is used as the input of the (k + 1)th hidden

layer, which is trained similarly. Finally, the hth layer’s

output is used as the output of the entire SAE model. In

this manner, AutoEncoders can form a hierarchical stack.

Figure 3 illustrates a SAEs model with h hidden layers.

Fig. 3. A stacked AutoEncoders model

To use the SAEs for malware detection, a classifier needs

to be added on the top layer. In our application, the SAEs

and the classifier comprise the entire deep architecture model

for malware detection, which is illustrated in Figure 4.

Fig. 4. Deep learning model for malware detection.

It is simple to train the deep network using Back Propa-

gation (BP) with the gradient-based optimization technique,

however, deep networks trained in this way are known to

have poor performance. Fortunately, the greedy layerwise un-

supervised learning algorithm developed by Hinton et al. [12]

has overcome this problem. The key point of this algorithm

is to pretrain the deep network layer by layer in a bottom-up

manner and then fine-tune the parameters by applying BP

in a top-down manner, which obtains better results. Resting

on [12], [5], the training algorithm for malware detection

using a deep learning architecture with SAEs is described in

Algorithm 2.

Input: Data set X with n training samples:

xi =< Afi , Cfi >, where i ∈ {1, ..., n} and

Cfi ∈ {cm, cb}; h: number of hidden layer; kj :

number of neurons for each layer, where

j ∈ {1, ..., h}
Output: Parameter sets θs

for each layer l(l ∈ {1, ..., h}) in SAEs do
Use Algorithm 1 to train the AutoEncoder at each

layer;

end
Initialize (Wh+1, bh+1) at the classifier layer;

Calculate the labels for each training sample xi;

Perform BP in a supervised way to tune the parameter

sets θs of all layers;

Algorithm 2: The algorithm for training the deep learning

network with SAEs in malware detection

5 Experimental results and analysis
In this section, we conduct two sets of experiments based

on a real and large sample collection obtained from Comodo

Cloud Security Center to fully evaluate the performance of

our deep learning model in malware detection: (1) In the first

64 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

TABLE II

PERFORMANCE MEASURES IN MALWARE DETECTION

Measure Description

TP Number of files correctly classified as malicious

TN Number of files correctly classified as benign

FP Number of files mistakenly classified as malicious

FN Number of files mistakenly classified as benign

TP Rate (TPR) TP
TP+FN

FP Rate (FPR) FP
FP+TN

Accuracy (ACY) TP+TN
TP+TN+FP+FN

Remark: TP : True Positive, TN : True Negative, FP : False Positive, and
FN : False Negative.

set of experiments, we evaluate the deep learning networks

with different parameters (i.e., different numbers of hidden

layers and neurons); (2) In the second set of experiments,

we conduct a comparison between our proposed method

and other shallow learning based classification methods (i.e.,

ANN, SVM, NB, and DT).

5.1 Experimental setup

The dataset obtained from Comodo Cloud Security Center

contains 50, 000 file samples, where 22, 500 are malware,

22, 500 are benign files, and 5, 000 are unknown (with the

analysis by the anti-malware experts of Comodo Security

Lab, 2, 500 of them are labeled as malware and 2, 500 of

them are benign). In our experiments, those 45, 000 file

samples are used for training, while the 5, 000 unknown files

are used for testing. 9, 649 Windows API calls are extracted

from these 50, 000 file samples, so all the file samples

can be represented as binary feature vectors with 9, 649-

dimensions (described in Section 4.1). To quantitatively

validate the experimental results, we use the performance

measures shown in Table II. All experiments are conducted

in the environment: 64 Bit Windows 8.1 on an Intel (R) Core

(TM) i7-4790 Processor (3.60GHz) with 16GB of RAM,

using MySQL and C++.

5.2 Evaluations of different deep networks

In this section, based on the dataset described in Sec-

tion 5.1, we evaluate the deep learning networks with differ-

ent parameters (i.e., different numbers of hidden layers and

neurons). The results in Table III and Figure 5 demonstrate

the effectiveness of our proposed algorithm in malware

detection. The deep learning model with 3 hidden layers

and 100 neurons at each hidden layer is superior to other

deep networks in training and testing accuracy for malware

detection.

5.3 Comparisons between deep learning and other shal-
low learning based classification methods

In this section, using the same dataset described in Sec-

tion 5.1, we conduct a comparison between our proposed

Fig. 5. Comparisons of testing TPR and FPR between different deep
networks

deep learning framework (DL4MD) and other shallow learn-

ing based classification methods (i.e., Artificial Neural Net-

work (ANN), Support Vector Machine (SVM), Naı̈ve Bayes

(NB), and Decision Tree (DT)) in malware detection. The

results in Table IV, Figure 6 and Figure 7 show that our

proposed deep learning framework (DL4MD) outperform

ANN, SVM, NB, and DT in malware detection.

Fig. 6. Comparisons of testing TPR and FPR between ANN, SVM, NB,
DT, and DL4MD

Fig. 7. Comparisons of ROC curves between ANN, SVM, NB, DT, and
DL4MD

Our proposed deep learning framework (DL4MD) also

performs well in detection efficiency: it just takes about 0.1

second for each unknown sample prediction, including fea-

ture extraction. This makes our system a practical solution for

intelligent malware detection in real industrial application.

Int'l Conf. Data Mining | DMIN'16 | 65

ISBN: 1-60132-431-6, CSREA Press ©

TABLE III

EVALUATION OF DIFFERENT DEEP NETWORKS

Training

Hidden Layers Neurons TP FP TN FN ACY

2 [50 50] 21,859 1,434 21,066 641 0.9539

2 [100 100] 22,142 1,460 21,040 358 0.9596

3 [50 50 50] 22,110 1,295 21,205 390 0.9626

3 [100 100 100] 22,035 953 21,547 465 0.9685
4 [100 100 100 100] 22,150 1,178 21,322 350 0.9660

5 [100 100 100 100 100] 22,055 977 21,523 445 0.9684

Testing

Hidden Layers Neurons TP FP TN FN ACY

2 [50 50] 2,368 161 2,339 132 0.9414

2 [100 100] 2,391 185 2,315 109 0.9412

3 [50 50 50] 2,396 170 2,330 104 0.9452

3 [100 100 100] 2,396 114 2,386 104 0.9564
4 [100 100 100 100] 2,408 147 2,353 92 0.9550

5 [100 100 100 100 100] 2,384 128 2,372 116 0.9512

TABLE IV

COMPARISONS BETWEEN DEEP LEARNING AND OTHER SHALLOW LEARNING BASED CLASSIFICATION METHODS

Training

Method TP FP TN FN ACY

ANN 21,338 1,781 20,719 1,162 0.9346

SVM 21,610 1,576 20,924 890 0.9452

NB 21,532 9,940 12,560 968 0.7576

DT 21,630 1,560 20,940 870 0.9460

DL4MD 22,035 953 21,547 465 0.9685

Testing

Method TP FP TN FN ACY

ANN 2,264 163 2,337 236 0.9202

SVM 2,305 152 2,348 195 0.9306

NB 2,332 1,541 959 168 0.6582

DT 2,357 292 2,208 143 0.9130

DL4MD 2,396 114 2,386 104 0.9564

66 Int'l Conf. Data Mining | DMIN'16 |

ISBN: 1-60132-431-6, CSREA Press ©

6 Conclusion and future work
In this paper, based on Windows API calls extracted

from a real and large file sample collection, we design a

deep learning framework using the SAEs model for malware

detection, which consists of two phases: unsupervised pre-
training and supervised backpropagation. The SAEs model

performs as unsupervised pretraining in a greedy layer-wise

fashion putting the parameters of all layers in a region of

parameter space in a bottom-up way, and then supervised

BP is adopted to tune the multilayer model’s parameters in a

top-down direction. To the best of our knowledge, this is the

first work investigating deep learning using the SAEs model

based on Windows API calls in malware detection for real in-

dustrial application. A comprehensive experimental study on

a real and large file collection from Comodo Cloud Security

Center is performed to compare various malware detection

approaches. The experimental results obtained demonstrate

that our proposed method can further improve the overall

performance in malware detection compared with traditional

shallow learning methods and that deep learning is a viable

architecture for malware detection.

In our future work, we will further explore how sparsity

constraints are imposed on AutoEncoder and how sparse

SAEs can be designed to further improve malware detection

effectiveness. Meanwhile, it would be interesting to investi-

gate other deep learning models for malware detection.

Acknowledgment
The authors would also like to thank the anti-malware

experts of Comodo Security Lab for the data collection

as well as helpful discussions and supports. This work is

partially supported by the U.S. National Science Foundation

under grant CNS-1618629.

References
[1] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Ahanian, and J.

Nazario. Automated classification and analysis of internet malware. In
RAID 2007, LNCS, 178-197, 2007.

[2] P. Beaucamps, and E. Filiol. On the possibility of practically obfuscating
programs towards a unified perspective of code protection. In Journal
in Computer Virology, 3 (1), 2007.

[3] Y. Bengio, and Y. LeCun. Scaling Learning Algorithms towards AI. In
Large-scale kernel machines, 34(5), 2007.

[4] Y. Bengio. Learning Deep Architectures for AI. In Foundations and
Trends in Machine Learning, Vol 2(1), 1-127, 2009.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy Layer-
Wise Training of Deep Networks. In Advances in Neural Information
Processing Systems 19 (NIPS’06), 153-160, 2007.

[6] R. Collobert, and J. Weston. A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning. In
Proceedings of 25th ICML, 160-167, 2008.

[7] R. A. Dunne. A Statistical Approach to Neural Networks for Pattern
Recognition. In Wiley-Interscience, 1st edition, 2007.

[8] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A Survey on Automated
Dynamic Malware Analysis Techniques and Tools. In ACM CSUR, Vol
44(2), 6:1-6:42, 2008.

[9] E. Filiol. Malware pattern scanning schemes secure against blackbox
analysis. In J. Comput. Virol, Vol 2(1), 35-50, 2006.

[10] E. Filiol, G. Jacob, and M. L. Liard. Evaluation methodology and
theoretical model for antiviral behavioural detection strategies. In J.
Comput. Virol, Vol 3(1), 27-37, 2007.

[11] G. E. Hinton, and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. In Science, Vol 313(5786), 504-507, 2006.

[12] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for
deep belief nets. In Neural Computation, Vol 18, 1527-1554, 2006.

[13] S. Hou, L. Chen, E. Tas, I. Demihovskiy, and Y. Ye. Cluster-Oriented
Ensemble Classifiers for Malware Detection. In IEEE International
Conference on Sematic Computing (IEEE ICSC), 189-196, 2015.

[14] W. Huang, G. Song, H. Hong, and K. Xie. Deep Architecture for Traf-
fic Flow Prediction: Deep Belief Networks With Multitask Learning. In
IEEE Transactions on Intelligent Transportation Systems, Vol 15(5),
2191-2201, 2014.

[15] W. Jung, S. Kim, and S. Choi. Poster: Deep Learning for Zero-day
Flash Malware Detection. In 36th IEEE Symposium on Security and
Privacy, 2015.

[16] Kaspersky Lab. The Great Bank Robbery. In http://www.kaspersky.
com/about/news/virus/2015/Carbanak-cybergang-steals-1-bn-USD-
from-100-financial-institutions-worldwide, 2015.

[17] Kaspersky Lab. Kaspersky Anti-Virus SDK v.8 Core Detection Tech-
nologies. In White Paper, August, 2009.

[18] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu,
and Y. LeCun. Learning Convolutional Feature Hierachies for Visual
Recognition. In Advances in Neural Information Processing Systems
(NIPS 2010), 23, 2010.

[19] J. Kephart, and W. Arnold. Automatic extraction of computer virus
signatures. In Proceedings of 4th Virus Bulletin International Confer-
ence, 178-184, 1994.

[20] J. Kolter, and M. Maloof. Learning to detect malicious executables in
the wild. In SIGKDD, 2004.

[21] Y. Li, R. Ma, and R. Jiao. A Hybrid Malicious Code Detection Method
based on Deep Learning. In International Journal of Security and Its
Applications, Vol 9(5), 205-216, 2015.

[22] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang. Traffic Flow Prediction
With Big Data: A Deep Learning Approach. In IEEE Transactions on
Intelligent Transportation Systems, Vol 16(2), 865-873, 2015.

[23] M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan,
J. Han, and B. Thuraisingham. Cloud-Based Malware Detection for
Evolving Data Streams. In ACM TMIS, Vol 2(3), 16:1-16:27, 2008.

[24] Organisation for Economic Co-operation and Development. Malicious
software (malware):Asecurity threat to the internet economy. White
Paper, June, 2008.

[25] J. Ouellette, A. Pfeffer, and A. Lakhotia. Countering Malware Evo-
lution Using Cloud-Based Learning. In 8th International Conference
on Malicious and Unwanted Software: ”The Americas” (MALWARE),
85-94, 2013.

[26] Y. Park, Q. Zhang, D. Reeves, and V. Mulukutla. AntiBot: Clustering
Common Semantic Patterns for Bot Detection. In IEEE 34th Annual
Computer Software and Applications Conference, 262-272, 2010.

[27] M. Schultz, E. Eskin, and E. Zadok. Data mining methods for detection
of new malicious executables. In Proccedings of IEEE Symposium on
Security and Privacy, 2001.

[28] S. Shah, H. Jani, S. Shetty, and K. Bhowmick. Virus Detection
using Artificial Neural Networks. In International Journal of Computer
Applications, vol. 84(5), 2013.

[29] A. Sung, J. Xu, P. Chavez, and S. Mukkamala. Static analyzer of
vicious executables (save). In Proceedings of the 20th ACSAC, 326-
334, 2004.

[30] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol.
Stacked Denoising Autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion. In Journal of Machine
Learning Research, Vol 11, 3371-3408, 2010.

[31] J. Wang, P. Deng, Y. Fan, L. Jaw, and Y. Liu. Virus detection using
data mining techniques. In Proccedings of ICDM03, 2003.

[32] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang. An intelligent PE-malware
detection system based on association mining. In Journal in Computer
Virology, Vol 4, 323-334, 2008.

[33] Y. Ye, D. Wang, T. Li, and D. Ye. IMDS: Intelligent Malware Detection
System. In Proceedings of the 13th ACM SIGKDD, 1043-1047, 2007.

[34] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdul-
hayoglu. Combining File Content and File Relations for Cloud Based
Malware Detection. In Proceedings of ACM International Conference
on Knowledge Discovery and Data Mining (ACM SIGKDD), 222-230,
2011.

[35] Y. Fan, Y. Ye and L. Chen. Malicious sequential pattern mining for
automatic malware detection. In Expert Systems with Applications, Vol
52, 16-25, 2016.

Int'l Conf. Data Mining | DMIN'16 | 67

ISBN: 1-60132-431-6, CSREA Press ©

